Use of Human Power in the Developing World

Rev. Dr. Jason K. Moore

Department of Mechanical and Aerospace Engineering University of California, Davis

February 16, 2017

Introduction

History Human Power

Machine Design

Transforming Human Motion Energy Storage

Real World Applications Successful Projects

Successful Project My Projects Example case

History Human Power

Historical Uses of Human Power

Transportation:

- walking and running
- hand carts
- rowing boats
- bicycle

- plow
- water pump
- food processors
- lathes, saws, sewing
- spinning

History Human Power

Historical Uses of Human Power

Transportation:

- walking and running
- hand carts
- rowing boats
- bicycle

- plow
- water pump
- food processors
- lathes, saws, sewing
- spinning

History Human Power

Historical Uses of Human Power

Transportation:

- walking and running
- hand carts
- rowing boats
- bicycle

- plow
- water pump
- food processors
- lathes, saws, sewing
- spinning

History Human Power

Historical Uses of Human Power

Transportation:

- walking and running
- hand carts
- rowing boats
- bicycle

- plow
- water pump
- food processors
- lathes, saws, sewing
- spinning

History Human Power

Historical Uses of Human Power

Transportation:

- walking and running
- hand carts
- rowing boats
- bicycle

- plow
- water pump
- food processors
- lathes, saws, sewing
- spinning

History Human Power

Historical Uses of Human Power

Transportation:

- walking and running
- hand carts
- rowing boats
- bicycle

- plow
- water pump
- food processors
- lathes, saws, sewing
- spinning

History Human Power

Historical Uses of Human Power

Transportation:

- walking and running
- hand carts
- rowing boats
- bicycle

- plow
- water pump
- food processors
- Iathes, saws, sewing
- spinning

Figure 1.3 Inclined treadmill powering a mill. (From Grudi and Ferguson 1987.)

History Human Power

Historical Uses of Human Power

Transportation:

- walking and running
- hand carts
- rowing boats
- bicycle

Tools:

- plow
- water pump
- food processors
- lathes, saws, sewing
- spinning

When ordering lathes, be particular to state clearly whether would with foot power or counterstaff; if with foot power, state whether velocipede or treadle.

History Human Power

Historical Uses of Human Power

Transportation:

- walking and running
- hand carts
- rowing boats
- bicycle

- plow
- water pump
- food processors
- lathes, saws, sewing
- spinning

History Human Power

The Human Machine

We are energy transformers!

History Human Power

The Human Machine

- We are energy transformers!
- We digest our fuel (food) to supply our brain and muscles with the energy need to think and move.

History Human Power

The Human Machine

- We are energy transformers!
- We digest our fuel (food) to supply our brain and muscles with the energy need to think and move.
- About as efficient as an Internal Combustion Engine (ICE)

History Human Power

Energy and Power

Work is a measure of energy

Work: a measure of energy

 $Work = force \cdot distance (Joules = Newtons \cdot Meters)$

History Human Power

Energy and Power

Work is a measure of energy

Work: a measure of energy

 $Work = force \cdot distance (Joules = Newtons \cdot Meters)$

Power is the measure of how fast we can do work

History Human Power

Energy and Power

Work is a measure of energy

Work: a measure of energy

 $Work = force \cdot distance (Joules = Newtons \cdot Meters)$

Power is the measure of how fast we can do work

Power

$$Power = \frac{Work}{Time} (Watt = \frac{Joules}{Seconds})$$

History Human Power

Figure 2.4

Human power output, principally by pedaling. Curves connect the terminations through exhaustion of *constant-power* tests. (Data collected by Dave Wil-

History Human Power

Figure 2.4

Human power output, principally by pedaling. Curves connect the terminations through exhaustion of *constant-power* tests. (Data collected by Dave Wil-

History Human Power

Figure 2.4

Human power output, principally by pedaling. Curves connect the terminations through exhaustion of *constant-power* tests. (Data collected by Dave Wil-

History Human Power

Efficiency

• Energy is lost when converting from one type to another.

History Human Power

Efficiency

- Energy is lost when converting from one type to another.
- Efficiency is a measure of this loss.

History Human Power

Efficiency

- Energy is lost when converting from one type to another.
- Efficiency is a measure of this loss.

Efficiency efficiency = $\frac{output}{input}$

History Human Power

Efficiency

- Energy is lost when converting from one type to another.
- Efficiency is a measure of this loss.

Efficiency $efficiency = \frac{output}{input}$

 Pedaling and rowing: most efficient at moderate to high power.

History Human Power

How efficient are we?

Thing	Efficiency
Human (food to mechanical)	18% to 26%
IC Engine	theorectial maximum: 35%,
	reality: 18% to 20%
Electric motors	65% to 95%
Transmissions	75% to 99%

History Human Power

How efficient are we?

Thing	Efficiency
Human (food to mechanical)	18% to 26%
IC Engine	theorectial maximum: 35%,
	reality: 18% to 20%
Electric motors	65% to 95%
Transmissions	75% to 99%

Efficiency

Efficiencies stack by multiplication!

History Human Power

Pedaling Rates

Wilson2004

Jason K. Moore

Use of Human Power in the Developing World

Transforming Human Motion Energy Storage

- Chain drives: 90%+
- Shaft drives: 80-90%
- Flat belt drives: 90%+
- ► Friction drives: <80%

Transforming Human Motion Energy Storage

- Chain drives: 90%+
- Shaft drives: 80-90%
- ► Flat belt drives: 90%+
- ► Friction drives: <80%

Transforming Human Motion Energy Storage

- Chain drives: 90%+
- Shaft drives: 80-90%
- ► Flat belt drives: 90%+
- ► Friction drives: <80%

Transforming Human Motion Energy Storage

- Chain drives: 90%+
- Shaft drives: 80-90%
- ► Flat belt drives: 90%+
- ► Friction drives: <80%

Transforming Human Motion Energy Storage

Rotational to Electrical

 Rotational generators are most common: 65-95%

Transforming Human Motion Energy Storage

Rotational to Electrical

- Rotational generators are most common: 65-95%
- Difficult to find low speed generators

Transforming Human Motion Energy Storage

Rotational to Electrical

- Rotational generators are most common: 65-95%
- Difficult to find low speed generators
- DC generators: voltage is proportional to the speed

Transforming Human Motion Energy Storage

Rotational to Electrical

- Rotational generators are most common: 65-95%
- Difficult to find low speed generators
- DC generators: voltage is proportional to the speed
- Alternators: minimum excitation needed, but easy to find

Transforming Human Motion Energy Storage

Energy Storage Types

• Springs store potential energy $E = \frac{1}{2}kx^2$

Transforming Human Motion Energy Storage

- Springs store potential energy $E = \frac{1}{2}kx^2$
- Flywheels store kinetic energy $E = \frac{1}{2}I\omega^2$

Transforming Human Motion Energy Storage

- Springs store potential energy $E = \frac{1}{2}kx^2$
- Flywheels store kinetic energy $E = \frac{1}{2}I\omega^2$
- Capacitors store energy like a spring $E = \frac{1}{2}CV^2$

Transforming Human Motion Energy Storage

- Springs store potential energy $E = \frac{1}{2}kx^2$
- Flywheels store kinetic energy $E = \frac{1}{2}I\omega^2$
- Capacitors store energy like a spring $E = \frac{1}{2}CV^2$
- Batteries create energy from a chemical reaction and store energy

Transforming Human Motion Energy Storage

- Springs store potential energy $E = \frac{1}{2}kx^2$
- Flywheels store kinetic energy $E = \frac{1}{2}I\omega^2$
- Capacitors store energy like a spring $E = \frac{1}{2}CV^2$
- Batteries create energy from a chemical reaction and store energy
- They all act as an energy buffer

Successful Projects My Projects Example case

The Bicycle

Successful Projects My Projects Example case

The Bicycle

Figure 4.16 Energy cost of human movement and of the propulsion of various vehicles.

Successful Projects My Projects Example case

The Bicycle

www.alaindelorme.com

Successful Projects My Projects Example case

Water Pumps

Successful Projects My Projects Example case

Kickstart Water Pumps

www.kickstart.org

Successful Projects My Projects Example case

The Full Belly Project

www.thefullbellyproject.org

Successful Projects My Projects Example case

One Laptop Per Child

Successful Projects My Projects Example case

Low power electronics

Successful Projects My Projects Example case

Rock The Bike

Successful Projects My Projects Example case

Green Gyms

Successful Projects My Projects Example case

R2B2 by Christoph Thetard

www.christoph-thetard.de

Successful Projects My Projects Example case

iRock Rocking Chair

http://www.treehugger.com/gadgets/ irock-rocking-chair-charges-your-apple-device.html

Successful Projects My Projects Example case

Piezoelectric Dance Floor

Successful Projects My Projects Example case

Electricity generating backpack

http://www.lightningpacks.com

Successful Projects My Projects Example case

ZAmbulance and wheelchairs in Zambia, Africa

Short distance transport for patients

Successful Projects My Projects Example case

ZAmbulance and wheelchairs in Zambia, Africa

- Short distance transport for patients
- Materials are imported and very expensive

Successful Projects My Projects Example case

ZAmbulance and wheelchairs in Zambia, Africa

- Short distance transport for patients
- Materials are imported and very expensive
- Only NGO's can purchase and distribute

Successful Projects My Projects Example case

Human powered machines in Guatemala

Corn grinding for masa

Successful Projects My Projects Example case

- Corn grinding for masa
- Rope water pump

Successful Projects My Projects Example case

- Corn grinding for masa
- Rope water pump
- Macadamia nut husker

Successful Projects My Projects Example case

- Corn grinding for masa
- Rope water pump
- Macadamia nut husker
- Clothes washing machine

Successful Projects My Projects Example case

- Corn grinding for masa
- Rope water pump
- Macadamia nut husker
- Clothes washing machine
- Peanut sheller

Successful Projects My Projects Example case

UC Davis Human Powered Utility Vehicle

Successful Projects My Projects Example case

Mobile Ministry Unit

Successful Projects My Projects Example case

Pedal Desk

- Power a laptop with pedal power
- Educate students on power usage
- http:

//www.moorepants.info/
portfolio/pedal-desk.html

Successful Projects My Projects Example case

How many people does it take to power a home?

http://www.youtube.com/watch?v=C93cL_zDVIM

Successful Projects My Projects Example case

Olympic Cyclist Vs a Toaster

https://youtu.be/S405voOCqAQ

Successful Projects My Projects Example case

Whipped Cream

Introduction Successful Proj Machine Design My Projects Real World Applications Example case

www.moorepants.info

Resources:

James C. McCullagh, David Gordon Wilson, Stuart S. Wilson, John McGeorge, Mark Blossom, and Diana Branch.

Pedal Power: In Work, Leisure, and Transportation.

Rodale Press, Emmaus, PA, 1977.

David Gordon Wilson.

Understanding pedal power.

Technical report, Volunteers in Technical Assistance, 1986.

D. G. Wilson and Jim Papadopoulos. Bicycling Science. MIT Press, 3rd edition, 2004.

Tamara Dean.

The Human-Powered Home: Choosing Muscles Over Motors. New Society Publishers, 2008.

Arjen Jansen.

Human Power: Empirically Explored.

PhD thesis, Delft University of Technology, 2011.