Identification of the open loop dynamics of a manually controlled bicycle-rider system

Jason K. Moore and Mont Hubbard

University of California, Davis

November 11, 2013

What is the plant?

No rider or rigid rider

Stable?

Sometimes

Primary Inputs

Torque/forces between the vehicle rigid bodies and/or ground, e.g. steer torque, ground reaction forces

External torques and forces, e.g. gust of wind

Primary Outputs

Functions of the vehicle states and inputs, e.g. steer angle

Non-rigid rider

Stable?

Probably never

Primary Inputs

Torque/forces between the vehicle and rider rigid bodies and/or ground, e.g. Muscle forces (or joint torques), ground reaction forces

External torques and forces, e.g gust of wind

Primary Outputs

Functions of the vehicle and rider states and inputs, e.g. elbow flexion

Do our models predict reality?

Validation/Identification of open loop rigid/no rider systems

CALSPAN

Rice, Roland, Manning, Lunch, Kunkel, Milliken, Davis, Cassidy; 1970-176

Man-Machine Dynamics in the Stabilization of Single-Track Vehicles

Eaton, D. J.; 1973

Experimental Validation of a Model for the Motion of an Uncontrolled Bicycle

Kooijman, J. D. G; 2007/8/9

Limitations

Validation/Identification vehicle + non-rigid rider

CALSPAN

Rice, Roland, Manning, Lunch, Kunkel, Milliken, Davis, Cassidy; 1970-76

Lateral dynamics of an offroad motorcycle by system identification

James, S. R..; 2002

Experimental Study of Motorcycle Transfer Functions for Evaluating Handling

Biral, F., Bortoluzzi, D., Cossalter, V., and Lio, M.; 2003

Comparison of experimental data to a model for bicycle steady-state turning

Cain, S. M. and Perkins, N. C.; 2012

Limitations

There are very few validations of bicycle/motorcycle models!

Some are questionable, some have decent results.

Bicycle validation is very weak.

Comprehensive data at many speeds and input frequencies is missing.

What is our plant?

Models

From first principles

Whipple model

Whipple model + arm inertial effects

Both linearized about the nominal configuration

Identified

4th order grey box model based on the Whipple model

Instrumented bicycle

Experiments

Data

~1.7 million time samples from each of about 30 sensors sampled at 200 hertz (about 2.4 hours of real time)

Grey Box Model Structure

Canonical linear form of the Whipple bicycle model:

$$ \mathbf{M} \ddot{q}(t) + v \mathbf{C}_1 \dot{q}(t) + [g \mathbf{K}_0 + v^2 \mathbf{K}_2] q(t) = T(t) + H F(t) $$

Coordinates: $$q(t) = [\phi(t) \quad \delta(t)]^T$$ Torques: $$T(t) = [0 \quad T_\delta(t)]^T$$ Lateral Force: $$F(t)$$

Known and Unknown

Measured time varying values: $$q(t), \dot{q}(t), v(t), T(t), F(t)$$ Estimated (numerical differentiation and filtering): $$\ddot{q}(t)$$ Measured constants:

$$ \mathbf{M} = \begin{bmatrix} \underline{M_{\phi\phi}} & M_{\phi\delta} \\ M_{\delta\phi} & M_{\delta\delta} \end{bmatrix} $$ $$ \mathbf{C}_1 = \begin{bmatrix} 0 & C_{1\phi\delta} \\ C_{1\delta\phi} & C_{1\delta\delta} \\ \end{bmatrix} $$ $$ \mathbf{K}_0 = \begin{bmatrix} \underline{K_{0\phi\phi}} & K_{0\phi\delta} \\ K_{0\delta\phi} & K_{0\delta\delta} \end{bmatrix} $$
$$ \mathbf{K}_2 = \begin{bmatrix} 0 & K_{2\phi\delta} \\ 0 & K_{2\delta\delta} \end{bmatrix} $$ $$ H = \begin{bmatrix} \underline{H_{\phi F}} \\ H_{\delta F} \end{bmatrix} $$ $$\underline{g}$$

Linear Least Squares

Two equations

$$ \mathbf{\Gamma}_{\phi} \Theta_{\phi} = Y_{\phi}, \quad \mathbf{\Gamma}_{\delta} \Theta_{\delta} = Y_{\delta} $$

Solution

$$ \hat{\Theta}_{\phi,\delta} = [\mathbf{\Gamma}_{\phi,\delta}^T \mathbf{\Gamma}_{\phi,\delta}]^{-1} \mathbf{\Gamma}_{\phi,\delta}^T Y_{\phi,\delta} $$

Variance Accounted For

$$ \textrm{VAF}_{\phi,\delta} = 1 - \frac{\vert \vert \mathbf{\Gamma}_{\phi,\delta}\hat{\Theta}_{\phi,\delta} - Y_{\phi,\delta} \vert \vert} {\vert \vert Y_{\phi,\delta} - \bar{Y}_{\phi,\delta} \vert \vert} $$

Linear Least Squares

$$ \small{ \begin{align} &\begin{bmatrix} \ddot{\delta}(1) & v(1) \dot{\delta}(1) & g \delta(1) \\ \vdots & \vdots & \vdots\\ \ddot{\delta}(N) & v(N) \dot{\delta}(N) & g \delta(N) \\ \end{bmatrix} \begin{bmatrix} M_{\phi\delta} \\ C_{1\phi\delta} \\ K_{0\phi\delta} \end{bmatrix}\\ &= \begin{bmatrix} H_{\phi F} F(1) - M_{\phi\phi} \ddot{\phi}(1) - C_{1\phi\phi} v(1) \dot{\phi}(1) - K_{0\phi\phi} g \phi(1) - K_{2\phi\phi} v(1)^2 \phi(1) - K_{2\phi\delta} v(1)^2 \delta(1) \\ \vdots\\ H_{\phi F} F(N) - M_{\phi\phi} \ddot{\phi}(N) - C_{1\phi\phi} v(N) \dot{\phi}(N) - K_{0\phi\phi} g \phi(N) - K_{2\phi\phi} v(N)^2 \phi(N) - K_{2\phi\delta} v(N)^2 \delta(N) \\ \end{bmatrix} \nonumber \end{align} } $$

LSS Variance Accounted For

Treadmill Simulation

Flat Ground Simulation

Simulation Variance Accounted For

Linear Model Comparison

Linear Model Comparison

Linear Model Comparison

Conclusions

Good stuff

Questionable Stuff

/

#