Jason K. Moore and Mont Hubbard
University of California, Davis
November 13, 2013
Predicted counter torque for entering a turn
Pointed out that torques were very light and difficult to measure
Probably first recorded measurement of steer torque. Steady turns, turns, and figure 8's.
Potential first bicycle steer torque measurements
Larger torques about longitude compared to steer axis
Uses bi-axial force transducers at each grip.
Not sexy, but completely eliminates cross talk. Pure steer torque.
\(\pm17\) Nm range
$$ \sum \bar{T}^{G/s} = {}^N\dot{\bar{H}}^{G/g_o} + \bar{r}^{g_o/s} \times m_G\,{}^N\bar{a}^{g_o} $$
$$^N\bar{H}^{G/g_o} = I^{G/g_o} \cdot {}^N\bar{\omega}^G$$
$$^N\bar{\omega}^B = w_{b1}\hat{b}_1 + w_{b2}\hat{b}_2 + w_{b3}\hat{b}_3$$
$$ ^N\bar{\omega}^G = (w_{b1}c_\delta + w_{b2}s_\delta)\hat{g}_1 + (-w_{b1}s_\delta + w_{b2}c_\delta)\hat{g}_2 + w_{h3}\hat{g}_3 $$
$$^N\bar{a}^v = a_{v1}\hat{b}_1 + a_{v2}\hat{b}_2 + a_{v3}\hat{b}_3$$
$$ \begin{align} T_{\delta} = & I_{G_{22}} \left[ \left( -w_{b1} s_\delta + w_{b2} c_\delta \right) c_\delta + w_{b2} s_\delta \right] + I_{G_{33}} \dot{w}_{g3} + \nonumber \\ & I_{G_{31}} \left[ (-w_{g3} + w_{b3} ) w_{b1} s_\delta + (-w_{b3} + w_{g3}) w_{b2} c_\delta + s_\delta \dot{w}_{b2} + c_\delta \dot{w}_{b1} \right] + \nonumber \\ & \left[ I_{G_{11}} (w_{b1} c_\delta + w_{b2}s_\delta) + I_{G_{31}} w_{g3} \right] \left[-w_{b1} s_\delta + w_{b2} c_\delta \right] + \nonumber \\ & d m_G \left[ d (-w_{b1} s_\delta + w_{b2} c_\delta) (w_{b1} c_\delta + w_{b2} s_\delta) + d \dot{w}_{g3} \right] - \nonumber \\ & d m_G \left[-d_{s1} w_{b2}^{2} + d_{s3} \dot{w}_{b2} - (d_{s1} w_{b3} - d_{s3} w_{b1}) w_{b3} + a_{v1} \right] s_\delta + \nonumber \\ & d m_G \left[d_{s1} w_{b1} w_{b2} + d_{s1} \dot{w}_{b3} + d_{s3} w_{b2} w_{b3} - d_{s3} \dot{w}_{b1} + a_{v2} \right] c_\delta + \nonumber \\ & T_U + T_M \end{align} $$
$$T_B = T_{Bc} + T_{Bv}$$
$$ T_{Bc} = t_B \operatorname{sgn}(\dot\delta) = \begin{cases} t_B & \textrm{if $\dot{\delta}>0$}\\ 0 & \textrm{if $\dot{\delta}=0$}\\ -t_B & \textrm{if $\dot{\delta}<0$} \end{cases} $$
$$T_{Bv} = c_B \dot{\delta}$$
$$ I_{HF} \ddot{\delta} + c_B \dot{\delta} + t_B \operatorname{sgn}(\dot{\delta}) + 2 k l^2 \delta = 0 $$
$$c_B = 0.34 \pm 0.04 \textrm{N} \cdot \textrm{m} \cdot s^2$$ $$t_B = 0.15 \pm 0.05 \textrm{N} \cdot \textrm{m}$$
$$I_{HF} = 0.1297+/-0.0005 \textrm{kg}\cdot \textrm{m}^2$$
359 runs
Statistic | Median | Maximum |
---|---|---|
Coefficient of Determination | 0.73 | 0.82 |
Maximum Error | 2.45 | 6.59 |
RMS of the Errors | 0.47 | 0.90 |
/
#