Methods for elimination of crosstalk and inertial effects in bicycle and motorcycle steer torque estimation

Jason K. Moore and Mont Hubbard

University of California, Davis

November 13, 2013

What is steer torque?

Steering and Stability of Single-Track Vehicles

Wilson-Jones, R. A.; 1951

Predicted counter torque for entering a turn

Pointed out that torques were very light and difficult to measure

Experimental Study on the Stability and Control of Single-Track Vehicles

Kondo, M.; 1955

Probably first recorded measurement of steer torque. Steady turns, turns, and figure 8's.

Man-Machine Dynamics in the Stabilization of Single-Track Vehicles

Eaton, D. J.; 1973

Motorcycle Handling

Weir, David H., Zellner, John W., and Teper, Gar; 1979

Quantification of Structural Loading During Off-road Cycling

de Lorenzo, D. S.; 1997

Potential first bicycle steer torque measurements

Larger torques about longitude compared to steer axis

Experimental investigation and simulation of motorcycle turning performance

D. Bortoluzzi, A. Doria and R. Lot; 2000

6 DoF Force/Torque Sensor

Kageyama, et. al

Bicycle Torque Sensor Experiment

Kok Y. Cheng, David Bothman, and Karl J. Åström; 2003

Rider analysis using a fully instrumented motorcycle

Evertse, M. V. C; 2010

Uses bi-axial force transducers at each grip.

Inventory of bicycle motion for the design of a bicycle simulator

van den Ouden, J. H.; 2011

Measurement Design Types

Floating handlebars

Fixed handlebars

Design Issues

Redo Cheng's Steer Torque Wrench Experiments

Experiments

Torque Wrench Results

New design

Not sexy, but completely eliminates cross talk. Pure steer torque.

\(\pm17\) Nm range

Steer Dynamics

$$ \sum \bar{T}^{G/s} = {}^N\dot{\bar{H}}^{G/g_o} + \bar{r}^{g_o/s} \times m_G\,{}^N\bar{a}^{g_o} $$

Steer Dynamics

Angular Momentum

$$^N\bar{H}^{G/g_o} = I^{G/g_o} \cdot {}^N\bar{\omega}^G$$

Measured rear frame angular velocity

$$^N\bar{\omega}^B = w_{b1}\hat{b}_1 + w_{b2}\hat{b}_2 + w_{b3}\hat{b}_3$$

Measured body fixed front frame angular velocity

$$ ^N\bar{\omega}^G = (w_{b1}c_\delta + w_{b2}s_\delta)\hat{g}_1 + (-w_{b1}s_\delta + w_{b2}c_\delta)\hat{g}_2 + w_{h3}\hat{g}_3 $$

Measure linear acceleration of rear frame

$$^N\bar{a}^v = a_{v1}\hat{b}_1 + a_{v2}\hat{b}_2 + a_{v3}\hat{b}_3$$

Rider Applied Steer Torque

$$ \begin{align} T_{\delta} = & I_{G_{22}} \left[ \left( -w_{b1} s_\delta + w_{b2} c_\delta \right) c_\delta + w_{b2} s_\delta \right] + I_{G_{33}} \dot{w}_{g3} + \nonumber \\ & I_{G_{31}} \left[ (-w_{g3} + w_{b3} ) w_{b1} s_\delta + (-w_{b3} + w_{g3}) w_{b2} c_\delta + s_\delta \dot{w}_{b2} + c_\delta \dot{w}_{b1} \right] + \nonumber \\ & \left[ I_{G_{11}} (w_{b1} c_\delta + w_{b2}s_\delta) + I_{G_{31}} w_{g3} \right] \left[-w_{b1} s_\delta + w_{b2} c_\delta \right] + \nonumber \\ & d m_G \left[ d (-w_{b1} s_\delta + w_{b2} c_\delta) (w_{b1} c_\delta + w_{b2} s_\delta) + d \dot{w}_{g3} \right] - \nonumber \\ & d m_G \left[-d_{s1} w_{b2}^{2} + d_{s3} \dot{w}_{b2} - (d_{s1} w_{b3} - d_{s3} w_{b1}) w_{b3} + a_{v1} \right] s_\delta + \nonumber \\ & d m_G \left[d_{s1} w_{b1} w_{b2} + d_{s1} \dot{w}_{b3} + d_{s3} w_{b2} w_{b3} - d_{s3} \dot{w}_{b1} + a_{v2} \right] c_\delta + \nonumber \\ & T_U + T_M \end{align} $$

Estimation of bearing friction

Estimation of bearing friction

Estimation of bearing friction

$$T_B = T_{Bc} + T_{Bv}$$

Coulomb

$$ T_{Bc} = t_B \operatorname{sgn}(\dot\delta) = \begin{cases} t_B & \textrm{if $\dot{\delta}>0$}\\ 0 & \textrm{if $\dot{\delta}=0$}\\ -t_B & \textrm{if $\dot{\delta}<0$} \end{cases} $$

Viscous

$$T_{Bv} = c_B \dot{\delta}$$

EoM

$$ I_{HF} \ddot{\delta} + c_B \dot{\delta} + t_B \operatorname{sgn}(\dot{\delta}) + 2 k l^2 \delta = 0 $$

Estimated values

$$c_B = 0.34 \pm 0.04 \textrm{N} \cdot \textrm{m} \cdot s^2$$ $$t_B = 0.15 \pm 0.05 \textrm{N} \cdot \textrm{m}$$

Estimation of handlebar inertia

$$I_{HF} = 0.1297+/-0.0005 \textrm{kg}\cdot \textrm{m}^2$$

Compensation

Torque Compensation

359 runs

Statistic Median Maximum
Coefficient of Determination 0.73 0.82
Maximum Error 2.45 6.59
RMS of the Errors 0.47 0.90

Conclusions

Notes

/

#