![]() |
Jason K. Moore May 10, 2012 |
![]() |
|
$$
q = [\phi \quad \delta]^T
$$
\(\phi\) : roll angle
\(\delta\) : steer angle
$$
T = [T_\phi \quad T_\delta]^T
$$
\(T_\phi\) : roll torque
\(T_\delta\) : steer torque
$$
\mathbf{M} \ddot{q} + v \mathbf{C}_1 \dot{q} + [g \mathbf{K}_0 + v^2 \mathbf{K}_2] q = T
$$
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
![]() |
![]() ![]() |
Steer-Roll-Yaw
![]() ![]() ![]() ![]() |
Pedaling
![]() |
![]() |
Lateral Knee, Knee Bounce
![]() |
![]() |
![]() |
![]() |
|
|
![]() |
![]() |
pypi.python.org/pypi/BicycleParameters
pypi.python.org/pypi/yeadon
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Eaton 1973
$$ Y_p(s)Y_c(s) = \frac{\omega_c e^{-\tau s}}{s} $$
$$ G_{nm}(s) = \frac{\omega_{nm}^2}{s^2 + 2 \zeta_{nm} \omega_{nm}s + \omega_{nm}} $$
$$ \hat{y}(t) = a_1 y(t-1) + \ldots + a_n y(t-n) + b_0 u(t) + \ldots + b_m u(t-m) $$
$$ \theta = [a_1, \ldots, a_n, b_0, \ldots, b_m]^T $$ $$ \phi(t) = [y(t-1), \ldots, y(t-n), u(t), \ldots, u(t-m)]^T $$
$$ \hat{y}(t|\theta) = \phi(t)^T\theta $$
$$ Z^N = \{u(1), y(1), \ldots, u(N), y(N)\} $$
$$ V_N(\theta, Z^N) = \frac{1}{N} \sum^N_{t=1}(y(t)-\hat{y}(t|\theta))^2 $$
$$ \hat{\theta} = min_\theta V_N(\theta, Z^N) $$
$$ \dot{x}(t) = \mathbf{F}x(t) + \mathbf{G}u(t)\\ \begin{bmatrix} \dot{\phi} \\ \dot{\delta} \\ \ddot{\phi} \\ \ddot{\delta} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ a_{\ddot{\phi}\phi} & a_{\ddot{\phi}\delta} & a_{\ddot{\phi}\dot{\phi}} & a_{\ddot{\phi}\dot{\delta}}\\ a_{\ddot{\delta}\phi} & a_{\ddot{\delta}\delta} & a_{\ddot{\delta}\dot{\phi}} & a_{\ddot{\delta}\dot{\delta}} \end{bmatrix} \begin{bmatrix} \phi \\ \delta \\ \dot{\phi} \\ \dot{\delta} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0\\ b_{\ddot{\phi}T_\delta} & b_{\ddot{\phi}F_{c_l}}\\ b_{\ddot{\delta}T_\delta} & b_{\ddot{\delta}F_{c_l}} \end{bmatrix} \begin{bmatrix} T_\delta\\ F_{c_l} \end{bmatrix} $$
$$ \mathbf{M} \ddot{q} + v \mathbf{C}_1 \dot{q} + [g \mathbf{K}_0 + v^2 \mathbf{K}_2] q = T + H F $$
$$ \Gamma \Theta = Y $$
$$ \hat{\Theta} = [\Gamma^T\Gamma]^{-1}\Gamma^T Y $$
$$ \frac{\delta}{\delta_c}(s) $$
$$ \frac{\dot{\phi}}{\dot{\phi}_c}(s) $$
$$ \frac{\phi}{\phi_e}(s) $$
$$ \frac{\psi}{\psi_e}(s) $$
$$ \frac{y_Q}{y_{Qe}}(s) $$
$$ \frac{y_Q}{y_{Qc}}(s) $$
$$ \frac{y_Q}{F}(s) $$
Jason K. Moore (moorepants@gmail.com)
moorepants on Github, G+, Twitter, Linkedn
Project Website: biosport.ucdavis.edu
dissertation: moorepants.github.com/dissertation
source code: github.com/moorepants
This work was supported by the National Science Foundation under Grant No 0928339.
/
#