## First Look at Rider Biomechanics while Controlling a Bicycle

Reverend Jason K. Moore

Bicycle Dynamics Lab 3mE/PME Engineering Dynamics Delft University of Technology & Sports Biomechanics Lab Mechanical and Aeronautical Engineering Department University of California, Davis

June 4, 2009

#### Outline

Introduction Instrumented bicycle Motion Capture Conclusions

#### Introduction

Handling Qualities What do we know? What we want to know

#### Instrumented bicycle

The bicycle Experiments Conclusions

#### Motion Capture

Experiments Data Processing Results

#### Conclusions

Handling Qualities What do we know? What we want to know

#### The Holy Grail

What are we seeking?

Handling Qualities What do we know? What we want to know

## The Holy Grail

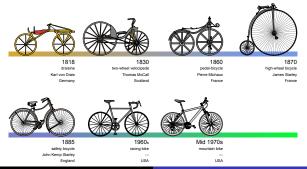
- ► What are we seeking?
  - To be able to predict the handling qualities of a bicycle.

Handling Qualities What do we know? What we want to know

## The Holy Grail

- What are we seeking?
  - To be able to predict the handling qualities of a bicycle.
- What is a handling quality?

Handling Qualities What do we know? What we want to know


## The Holy Grail

- What are we seeking?
  - To be able to predict the handling qualities of a bicycle.
- What is a handling quality?
  - A measure that determines the ease and precision with which a rider may complete a given task

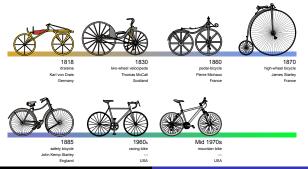
Handling Qualities What do we know? What we want to know

#### But why?

Isn't the bicycle perfect the way it is?



Jason K. Moore


First Look at Rider Biomechanics while Controlling a Bicycle

Handling Qualities What do we know? What we want to know

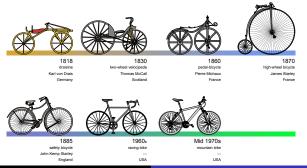
#### But why?

Isn't the bicycle perfect the way it is?

► The bicycle evolved from 200 years of tinkerers.



Jason K. Moore


First Look at Rider Biomechanics while Controlling a Bicycle

Handling Qualities What do we know? What we want to know

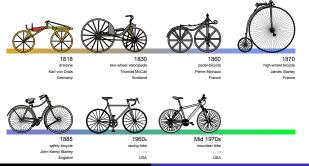
#### But why?

Isn't the bicycle perfect the way it is?

- ► The bicycle evolved from 200 years of tinkerers.
- Alternative designs do not have this luxury.



Jason K. Moore


First Look at Rider Biomechanics while Controlling a Bicycle

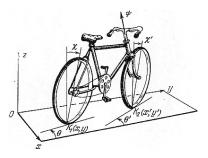
Handling Qualities What do we know? What we want to know

#### But why?

Isn't the bicycle perfect the way it is?

- ► The bicycle evolved from 200 years of tinkerers.
- Alternative designs do not have this luxury.
- ▶ Help shed light on many other human/machine interactions.

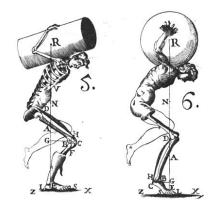



Jason K. Moore

First Look at Rider Biomechanics while Controlling a Bicycle

Handling Qualities What do we know? What we want to know

#### Handling qualities road map


Vehicle Dynamics ↓ Human Biomechanics ↓ Manual Control ↓ Handling qualities



Handling Qualities What do we know? What we want to know

#### Handling qualities road map

Vehicle Dynamics ↓ Human Biomechanics ↓ Manual Control ↓ Handling qualities



Handling Qualities What do we know? What we want to know

#### Handling qualities road map

Vehicle Dynamics ↓ Human Biomechanics ↓ Manual Control ↓ Handling qualities



Handling Qualities What do we know? What we want to know

#### Handling qualities road map

Vehicle Dynamics ↓ Human Biomechanics ↓ Manual Control ↓ Handling qualities



Handling Qualities What do we know? What we want to know

#### Vehicle dynamics

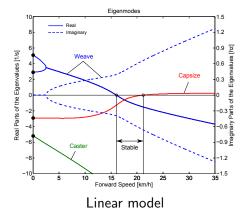
#### We only confidently know two things about bicycle dynamics:

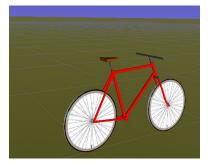
Handling Qualities What do we know? What we want to know

#### Vehicle dynamics

# We only confidently know two things about bicycle dynamics: Fact # 1: Some bicycles are stable at various speeds.

Handling Qualities What do we know? What we want to know


## Vehicle dynamics

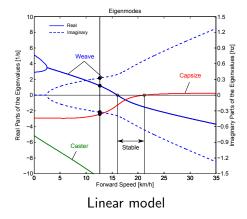

We only confidently know two things about bicycle dynamics:

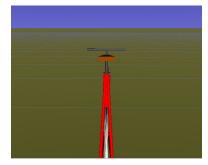
- ▶ Fact # 1: Some bicycles are stable at various speeds.
- Fact # 2: Steering into the lean will stabilize the bicycle. As a consequence, to go right you have to steer to the left!

Handling Qualities What do we know? What we want to know

#### Unstable at 0 km/h





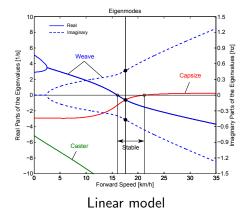


Non-linear simulation

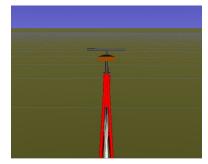
< 🗗 >

Handling Qualities What do we know? What we want to know

## Unstable 12.6 km/h





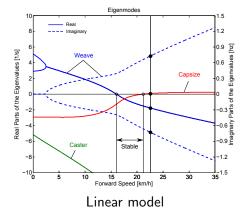


Non-linear simulation

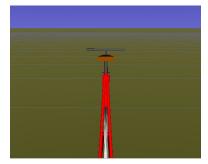
< 🗗 >

Handling Qualities What do we know? What we want to know

## Stable at 17.6 km/h







Non-linear simulation

< 🗗 >

Handling Qualities What do we know? What we want to know

#### Unstable at 22.7 km/h





Non-linear simulation

< 🗗 >

Handling Qualities What do we know? What we want to know

#### Yellow Bicycle



Handling Qualities What do we know? What we want to know

#### Gyrobike



Jason K. Moore First Look at Rider Biomechanics while Controlling a Bicycle

Handling Qualities What do we know? What we want to know

#### Countersteering



Handling Qualities What do we know? What we want to know

#### Vehicle dynamics and handling

Is stability beneficial?

Handling Qualities What do we know? What we want to know

#### Vehicle dynamics and handling

- Is stability beneficial?
  - The Wright Flyer was an unstable aircraft
  - Fighter jets are unstable without control
  - Race cars are typically on the verge of stability

Handling Qualities What do we know? What we want to know

#### Vehicle dynamics and handling

- Is stability beneficial?
  - The Wright Flyer was an unstable aircraft
  - Fighter jets are unstable without control
  - Race cars are typically on the verge of stability
- Stability does not necessarily equate to ease of control

Handling Qualities What do we know? What we want to know

#### Vehicle dynamics and handling

- Is stability beneficial?
  - The Wright Flyer was an unstable aircraft
  - Fighter jets are unstable without control
  - Race cars are typically on the verge of stability
- Stability does not necessarily equate to ease of control
- Are the uncontrolled dynamics and indicator of handling?

Handling Qualities What do we know? What we want to know

## Vehicle dynamics and handling

- Is stability beneficial?
  - The Wright Flyer was an unstable aircraft
  - Fighter jets are unstable without control
  - Race cars are typically on the verge of stability
- Stability does not necessarily equate to ease of control
- Are the uncontrolled dynamics and indicator of handling?
  - ► For aircraft, connections have been found
  - Unlike a bicycle, the pilot's motion does not affect the aircraft's dynamics
  - Pilot and manual control theory have provided more insight

Handling Qualities What do we know? What we want to know

#### How do we control the bicycle?



Danny MacAskill, Pro Trials Rider

Jason K. Moore First Look at Rider Biomechanics while Controlling a Bicycle

Handling Qualities What do we know? What we want to know

#### How do we control the bicycle?

Obvious control input candidates:

Not so obvious candidates:

< **∂** >

Handling Qualities What do we know? What we want to know

#### How do we control the bicycle?

Obvious control input candidates:

Steering

Not so obvious candidates:

. . . . . . .

Handling Qualities What do we know? What we want to know

#### How do we control the bicycle?

Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)

Not so obvious candidates:

Handling Qualities What do we know? What we want to know

#### How do we control the bicycle?

Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)

Not so obvious candidates:

Upper body twist

Handling Qualities What do we know? What we want to know

#### How do we control the bicycle?

Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)

Not so obvious candidates:

- Upper body twist
- Arm movement

Handling Qualities What do we know? What we want to know

#### How do we control the bicycle?

Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)

Not so obvious candidates:

- Upper body twist
- Arm movement
- Leg movement

Handling Qualities What do we know? What we want to know

# How do we control the bicycle?

Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)

Not so obvious candidates:

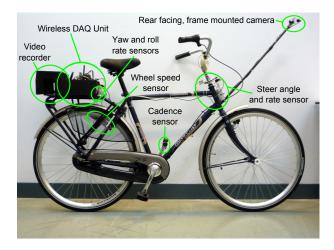
- Upper body twist
- Arm movement
- Leg movement
- Shifting on the saddle

Handling Qualities What do we know? What we want to know

# How do we control the bicycle?

Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)


Not so obvious candidates:

- Upper body twist
- Arm movement
- Leg movement
- Shifting on the saddle

First step: objectively observe and measure what the rider does

The bicycle Experiments Conclusions

## The bicycle



Jason K. Moore First Look at Rider Biomechanics while Controlling a Bicycle

The bicycle Experiments Conclusions

## Experiments

Around the town ride







Jason K. Moore First Look at Rider Biomechanics while Controlling a Bicycle

The bicycle Experiments Conclusions

### Experiments

- Around the town ride
- Treadmill tests: pedaling, no pedaling, no-hands, perturbing, lane change





< (7) >

The bicycle Experiments Conclusions

## Experiments

- Around the town ride
- Treadmill tests: pedaling, no pedaling, no-hands, perturbing, lane change
- Measured bicycle dynamics and observed rider





< (7) >

The bicycle Experiments Conclusions

## Conclusions

No visual signs of upper body lean

The bicycle Experiments Conclusions



- No visual signs of upper body lean
- Steering frequency is dominated by pedaling frequency

The bicycle Experiments Conclusions



- No visual signs of upper body lean
- Steering frequency is dominated by pedaling frequency
- Steering amplitude inversely proportional to the speed

The bicycle Experiments Conclusions



- No visual signs of upper body lean
- Steering frequency is dominated by pedaling frequency
- Steering amplitude inversely proportional to the speed
- At low speeds the rider exhibited knee motion

The bicycle Experiments Conclusions

# Conclusions

- No visual signs of upper body lean
- Steering frequency is dominated by pedaling frequency
- Steering amplitude inversely proportional to the speed
- At low speeds the rider exhibited knee motion

But, no easy way to quantify the rider's movements.

Experiments Data Processing Results

# Experimental Setup

- Full body motion capture with active markers
- Two different bicycles and three adult male riders
- Treadmill tests (pedaling, no pedaling, no-hands, tracking) at different speeds



Jason K. Moore



First Look at Rider Biomechanics while Controlling a Bicycle

Experiments Data Processing Results

#### Principal component analysis

 $3 \ \mathrm{riders} \times 90 \tfrac{\mathrm{runs}}{\mathrm{rider}} \times 560,000 \tfrac{\mathrm{data \ points}}{\mathrm{run}} = 150 \cdot 10^6 \ \mathrm{data \ points}$ 

Experiments Data Processing Results

#### Principal component analysis

 $\label{eq:component} \begin{array}{l} 3 \ \mathrm{riders} \times 90 \frac{\mathrm{runs}}{\mathrm{rider}} \times 560, 000 \frac{\mathrm{data \ points}}{\mathrm{run}} = 150 \cdot 10^6 \ \mathrm{data \ points} \\ \\ & \mbox{Principal Component Analysis!} \end{array}$ 

Experiments Data Processing Results

## Principal component analysis

 $\label{eq:riders} 3 \ \mathrm{riders} \times 90 \tfrac{\mathrm{runs}}{\mathrm{rider}} \times 560,000 \tfrac{\mathrm{data \ points}}{\mathrm{run}} = 150 \cdot 10^6 \ \mathrm{data \ points}$   $\mathsf{Principal \ Component \ Analysis!}$ 

 Statistical data reduction technique based on an eigenanalysis of data variance

< 67 ►

Experiments Data Processing Results

## Principal component analysis

 $\label{eq:component} 3 \ \mathrm{riders} \times 90 \tfrac{\mathrm{runs}}{\mathrm{rider}} \times 560,000 \tfrac{\mathrm{data \ points}}{\mathrm{run}} = 150 \cdot 10^6 \ \mathrm{data \ points}$   $\mathsf{Principal \ Component \ Analysis!}$ 

- Statistical data reduction technique based on an eigenanalysis of data variance
- Used for face recognition, data compression, characterizing human walking

Experiments Data Processing Results

## Principal component analysis

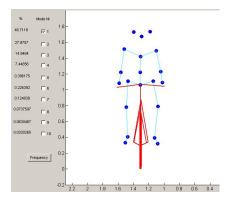
 $\label{eq:component} 3 \ \mathrm{riders} \times 90 \tfrac{\mathrm{runs}}{\mathrm{rider}} \times 560,000 \tfrac{\mathrm{data \ points}}{\mathrm{run}} = 150 \cdot 10^6 \ \mathrm{data \ points}$   $\mathsf{Principal \ Component \ Analysis!}$ 

- Statistical data reduction technique based on an eigenanalysis of data variance
- Used for face recognition, data compression, characterizing human walking
- Largest eigenvalue corresponds to largest variance in motion

Experiments Data Processing Results

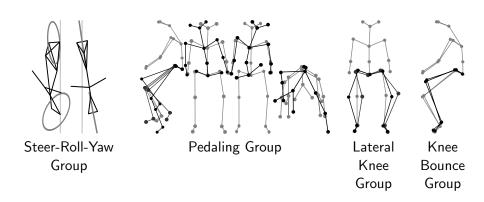
#### Graphical User Interface




Jason K. Moore

First Look at Rider Biomechanics while Controlling a Bicycle

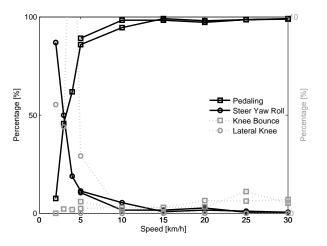
Experiments Data Processing Results


# Normal bicycling at 15 km/h





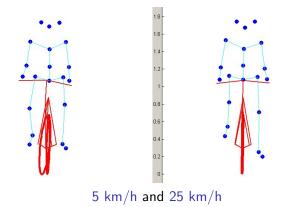
Experiments Data Processing Results


## Motions and Groups



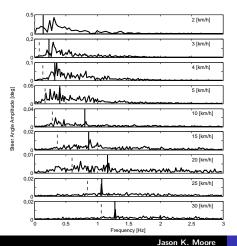
< (7) >

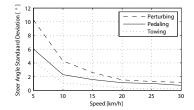
Experiments Data Processing Results


#### Group variance vs speed



Jason K. Moore First Look at Rider Biomechanics while Controlling a Bicycle


Experiments Data Processing Results


## Normal bicycling at 5 km/h and 25 km/h



Experiments Data Processing Results

### Steer angle comparisons





First Look at Rider Biomechanics while Controlling a Bicycle



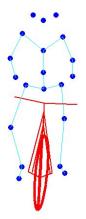
 During normal bicycling the dominant upper body motions: lean, bend, twist and bounce, are all linked to the pedaling motion.



- During normal bicycling the dominant upper body motions: lean, bend, twist and bounce, are all linked to the pedaling motion.
- We hypothesize that lateral control is mainly done by steering since we observed only upper body motion in the pedaling frequency.



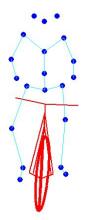
- During normal bicycling the dominant upper body motions: lean, bend, twist and bounce, are all linked to the pedaling motion.
- We hypothesize that lateral control is mainly done by steering since we observed only upper body motion in the pedaling frequency.
- If upper body motions are used for control then this control is in the pedaling frequency.




- During normal bicycling the dominant upper body motions: lean, bend, twist and bounce, are all linked to the pedaling motion.
- We hypothesize that lateral control is mainly done by steering since we observed only upper body motion in the pedaling frequency.
- If upper body motions are used for control then this control is in the pedaling frequency.
- When pedaling at low speed we observe lateral knee motions which are probably also used for control.

## Conclusions

Bicycles present a rich complex and robust system to study

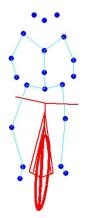

 vehicle dynamics (rolling contacts, variable stability)



## Conclusions

Bicycles present a rich complex and robust system to study

- vehicle dynamics (rolling contacts, variable stability)
- biomechanics (human stabilization, locomotion)

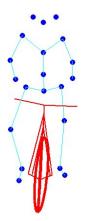



< (7) >

## Conclusions

Bicycles present a rich complex and robust system to study

- vehicle dynamics (rolling contacts, variable stability)
- biomechanics (human stabilization, locomotion)
- human control (stabilization
   + manuveuring)




< (7) >

## Conclusions

Bicycles present a rich complex and robust system to study

- vehicle dynamics (rolling contacts, variable stability)
- biomechanics (human stabilization, locomotion)
- human control (stabilization
   + manuveuring)
- handling qualities (perception, psychology)



< A >