# First Look at Rider Biomechanics while Controlling a Bicycle

#### Reverend Jason K. Moore

Sports Biomechanics Lab
Mechanical and Aeronautical Engineering Department
University of California, Davis
&
Bicycle Dynamics Lab
3mE/PME Engineering Dynamics

Delft University of Technology

Thursday October 29, 2009



Outline Introduction Instrumented bicycle Motion Capture Conclusions





#### Introduction

Handling Qualities

What do we know?

What we want to know

#### Instrumented bicycle

The bicycle

Experiments

Conclusions

#### Motion Capture

Experiments

Data Processing

Results

#### Conclusions

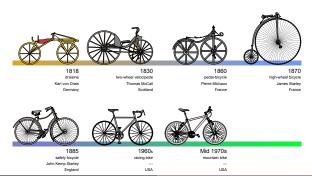


▶ What are we seeking?



- ▶ What are we seeking?
  - ► To be able to predict the handling qualities of a bicycle.

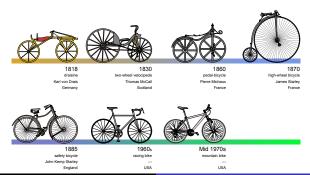



- ▶ What are we seeking?
  - ▶ To be able to predict the handling qualities of a bicycle.
- What is a handling quality?



- ▶ What are we seeking?
  - ▶ To be able to predict the handling qualities of a bicycle.
- What is a handling quality?
  - A measure that determines the ease and precision with which a rider may complete a given task

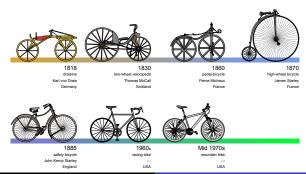



Isn't the bicycle perfect the way it is?





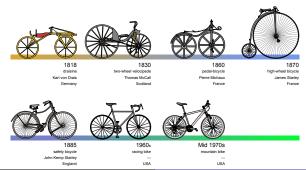
Isn't the bicycle perfect the way it is?


▶ The bicycle evolved from 200 years of tinkerers.

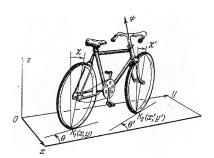


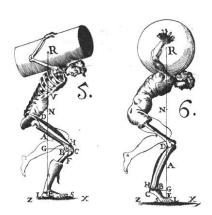


Isn't the bicycle perfect the way it is?


- ▶ The bicycle evolved from 200 years of tinkerers.
- Alternative designs do not have this luxury.







Isn't the bicycle perfect the way it is?

- ▶ The bicycle evolved from 200 years of tinkerers.
- Alternative designs do not have this luxury.
- ▶ Help shed light on many other human/machine interactions.

















We only confidently know some things about bicycle dynamics:



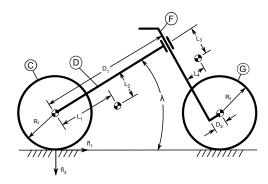
We only confidently know some things about bicycle dynamics:

▶ Fact # 1: Some bicycles are stable at various speeds.

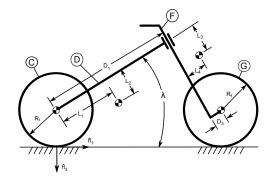


We only confidently know some things about bicycle dynamics:

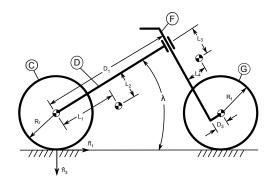
- ► Fact # 1: Some bicycles are stable at various speeds.
- ► Fact # 2: Steering into the lean will stabilize the bicycle.



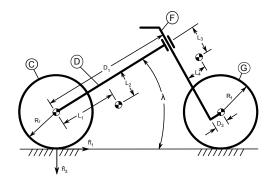

We only confidently know some things about bicycle dynamics:


- ► Fact # 1: Some bicycles are stable at various speeds.
- ► Fact # 2: Steering into the lean will stabilize the bicycle.
- ► Fact # 3: To initiate a right turn (rightward lean) you have to first steer to the left!

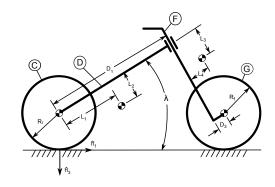



► Four rigid bodies



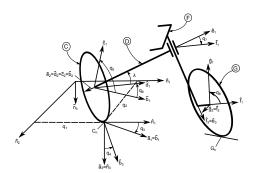

- ► Four rigid bodies
- Frictionless revolute joints




- ► Four rigid bodies
- Frictionless revolute joints
- Knife edge, no-slip wheels

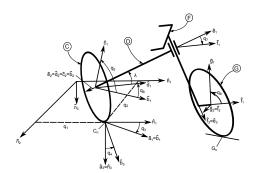


- ► Four rigid bodies
- Frictionless revolute joints
- Knife edge, no-slip wheels
- Uncontrolled



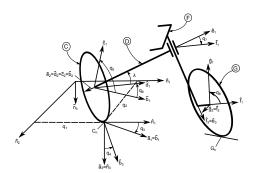

- ► Four rigid bodies
- Frictionless revolute joints
- Knife edge, no-slip wheels
- Uncontrolled
- 25 parameters




8 GCs - 1 HC - 4 NHCs = 3 DoF

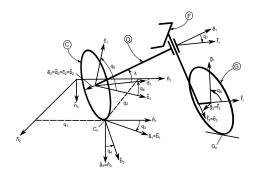
8 generalized coordinates




8 GCs - 1 HC - 4 NHCs = 3 DoF

#### 1 holonomic constraint




8 GCs - 1 HC - 4 NHCs = 3 DoF

4 nonholonomic constraints



8 GCs - 1 HC - 4 NHCs = 3 DoF

3 degrees of freedom: steer, lean, rear wheel rates





▶ Linearized about upright constant forward speed configuration.

▶ Linearized about upright constant forward speed configuration.

#### **Equations of Motion**

$$\mathbf{M} \ddot{\mathbf{q}} + v \mathbf{C}_1 \dot{\mathbf{q}} + [g \mathbf{K}_0 + v^2 \mathbf{K}_2] \mathbf{q} = 0$$

▶ Linearized about upright constant forward speed configuration.

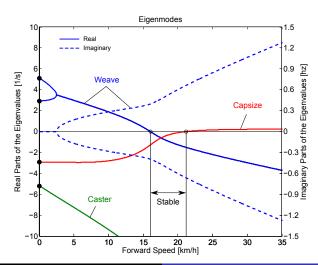
#### **Equations of Motion**

$$\mathbf{M} \ddot{\mathbf{q}} + v \mathbf{C}_1 \dot{\mathbf{q}} + [g \mathbf{K}_0 + v^2 \mathbf{K}_2] \mathbf{q} = 0$$

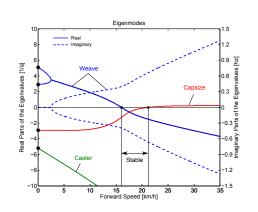
- Three modes of motion:
  - Weave: Oscillatory, stable at higher speeds.
  - Capsize: Stable at lower speeds.
  - Caster: Always stable.

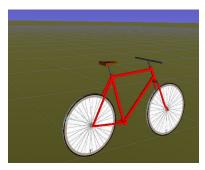


▶ Linearized about upright constant forward speed configuration.


#### **Equations of Motion**

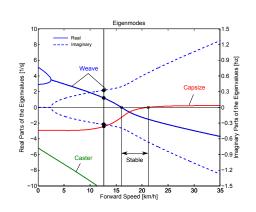
$$\mathbf{M} \ddot{\mathbf{q}} + v \mathbf{C}_1 \dot{\mathbf{q}} + [g \mathbf{K}_0 + v^2 \mathbf{K}_2] \mathbf{q} = 0$$

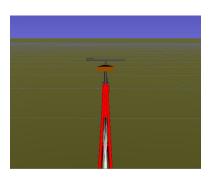

- Three modes of motion:
  - Weave: Oscillatory, stable at higher speeds.
  - ► Capsize: Stable at lower speeds.
  - Caster: Always stable.
- Average bicycle stable speed range: 11 to 18  $\frac{km}{h}$  (7 to 11 mph).




# Eigenvalues vs. Speed

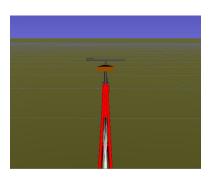



# Unstable at 0 km/h (0 mph)



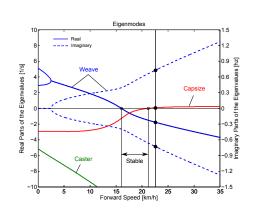


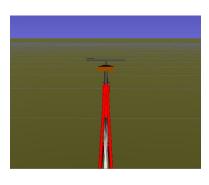




# Unstable 12.6 km/h (7.9 mph)






# Stable at 17.6 km/h (11.0 mph)








# Unstable at 22.7 km/h (14.2 mph)







# Yellow Bicycle



# Gyrobike



# Countersteering



Is stability beneficial?



- ▶ Is stability beneficial?
  - The Wright Flyer was an unstable aircraft
  - Fighter jets are unstable without control
  - Race cars are typically on the verge of stability



- ▶ Is stability beneficial?
  - The Wright Flyer was an unstable aircraft
  - Fighter jets are unstable without control
  - Race cars are typically on the verge of stability
- Stability does not necessarily equate to ease of control



- ► Is stability beneficial?
  - ▶ The Wright Flyer was an unstable aircraft
  - Fighter jets are unstable without control
  - Race cars are typically on the verge of stability
- Stability does not necessarily equate to ease of control
- Are the uncontrolled dynamics and indicator of handling?



- ▶ Is stability beneficial?
  - The Wright Flyer was an unstable aircraft
  - Fighter jets are unstable without control
  - Race cars are typically on the verge of stability
- Stability does not necessarily equate to ease of control
- Are the uncontrolled dynamics and indicator of handling?
  - ▶ For aircraft, connections have been found
  - Unlike a bicycle, the pilot's motion does not affect the aircraft's dynamics
  - Pilot and manual control theory have provided more insight





Danny MacAskill, Pro Trials Rider



Obvious control input candidates:



Obvious control input candidates:

Steering

Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)



Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)

Not so obvious candidates:

Upper body twist



### Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)

- Upper body twist
- Arm movement



### Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)

- ▶ Upper body twist
- Arm movement
- Leg movement



#### Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)

- Upper body twist
- Arm movement
- Leg movement
- Shifting on the saddle



Obvious control input candidates:

- Steering
- Upper body lean (especially while riding no-hands)

Not so obvious candidates:

- ▶ Upper body twist
- Arm movement
- Leg movement
- Shifting on the saddle

First step: objectively observe and measure what the rider does



## The bicycle



# Experiments

Around the town ride





## Experiments

- Around the town ride
- Treadmill tests: pedaling, no pedaling, no-hands, perturbing, lane change





## Experiments

- Around the town ride
- Treadmill tests: pedaling, no pedaling, no-hands, perturbing, lane change
- Measured bicycle dynamics and observed rider





▶ No visual signs of upper body lean

- ▶ No visual signs of upper body lean
- Steering frequency is dominated by pedaling frequency



- ▶ No visual signs of upper body lean
- Steering frequency is dominated by pedaling frequency
- Steering amplitude inversely proportional to the speed



- ▶ No visual signs of upper body lean
- Steering frequency is dominated by pedaling frequency
- Steering amplitude inversely proportional to the speed
- At low speeds the rider exhibited knee motion

- ▶ No visual signs of upper body lean
- Steering frequency is dominated by pedaling frequency
- Steering amplitude inversely proportional to the speed
- At low speeds the rider exhibited knee motion

But, no easy way to quantify the rider's movements.



## **Experimental Setup**

- Full body motion capture with active markers
- Two different bicycles and three adult male riders
- ► Treadmill tests (pedaling, no pedaling, no-hands, tracking) at different speeds







$$3~{\rm riders} \times 90 \tfrac{\rm runs}{\rm rider} \times 560,000 \tfrac{\rm data~points}{\rm run} = 150 \cdot 10^6~{\rm data~points}$$

$$\label{eq:riders} 3~{\rm riders} \times 90 \frac{\rm runs}{\rm rider} \times 560,000 \frac{\rm data~points}{\rm run} = 150 \cdot 10^6 ~\rm data~points$$
 Principal Component Analysis!

$$\label{eq:riders} 3~{\rm riders} \times 90 \frac{\rm runs}{\rm rider} \times 560,000 \frac{\rm data~points}{\rm run} = 150 \cdot 10^6 ~\rm data~points$$
 Principal Component Analysis!

► Statistical data reduction technique based on an eigenanalysis of data variance



$$\label{eq:riders} 3~{\rm riders} \times 90 \frac{\rm runs}{\rm rider} \times 560,000 \frac{\rm data~points}{\rm run} = 150 \cdot 10^6 ~\rm data~points$$
 Principal Component Analysis!

- Statistical data reduction technique based on an eigenanalysis of data variance
- Used for face recognition, data compression, characterizing human walking



$$\label{eq:riders} 3~{\rm riders} \times 90 \frac{\rm runs}{\rm rider} \times 560,000 \frac{\rm data~points}{\rm run} = 150 \cdot 10^6 ~\rm data~points$$
 Principal Component Analysis!

- Statistical data reduction technique based on an eigenanalysis of data variance
- Used for face recognition, data compression, characterizing human walking
- Largest eigenvalue corresponds to largest variance in motion

## PCA in a nutshell

$$\mathbf{P} = \left[ \begin{array}{cccc} x_1 & \dots & x_j & \dots & x_n \\ y_1 & \dots & y_j & \dots & y_n \end{array} \right]$$

## PCA in a nutshell

$$\mathbf{P} = \left[ \begin{array}{cccc} x_1 & \dots & x_j & \dots & x_n \\ y_1 & \dots & y_j & \dots & y_n \end{array} \right]$$

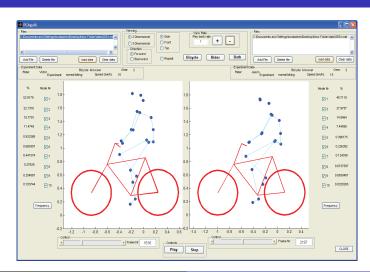
Covariance of the mean subtracted data:

$$\mathbf{C} = \frac{1}{1-n} (\mathbf{P} - \overline{\mathbf{P}}) (\mathbf{P} - \overline{\mathbf{P}})^T$$

## PCA in a nutshell

$$\mathbf{P} = \left[ \begin{array}{cccc} x_1 & \dots & x_j & \dots & x_n \\ y_1 & \dots & y_j & \dots & y_n \end{array} \right]$$

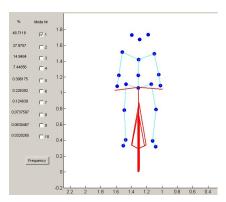
Covariance of the mean subtracted data:


$$\mathbf{C} = \frac{1}{1-n} (\mathbf{P} - \overline{\mathbf{P}}) (\mathbf{P} - \overline{\mathbf{P}})^T$$

$$\left[\begin{array}{c}x_j\\y_j\end{array}\right]=\overline{\mathbf{u}}+a_{1j}\mathbf{v}_1+a_{2j}\mathbf{v}_2$$

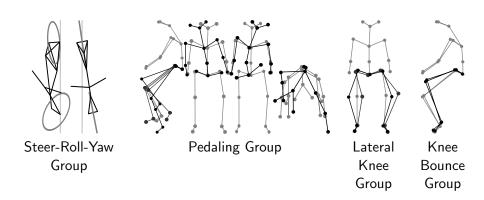
 $\mathbf{v}_1$  and  $\mathbf{v}_2$  are the eigenvectors of the covariance matrix,  $\mathbf{C}$ 



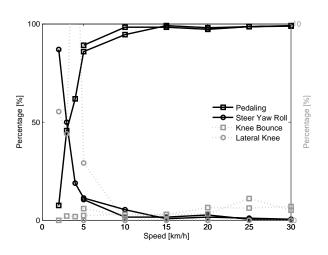

### Graphical User Interface



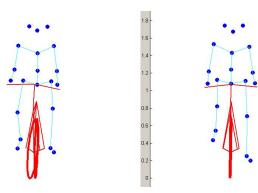



# Normal bicycling at 15 km/h





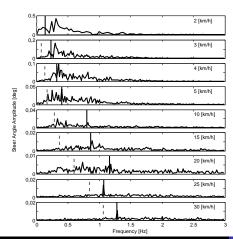


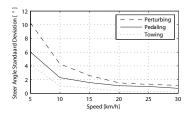


# Motions and Groups



# Group variance vs speed




# Normal bicycling at 5 km/h and 25 km/h








### Steer angle comparisons





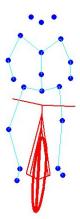


During normal bicycling the dominant upper body motions: lean, bend, twist and bounce, are all linked to the pedaling motion.

- During normal bicycling the dominant upper body motions: lean, bend, twist and bounce, are all linked to the pedaling motion.
- ▶ We hypothesize that lateral control is mainly done by steering since we observed only upper body motion in the pedaling frequency.

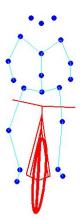


- During normal bicycling the dominant upper body motions: lean, bend, twist and bounce, are all linked to the pedaling motion.
- We hypothesize that lateral control is mainly done by steering since we observed only upper body motion in the pedaling frequency.
- ▶ If upper body motions are used for control then this control is in the pedaling frequency.




- During normal bicycling the dominant upper body motions: lean, bend, twist and bounce, are all linked to the pedaling motion.
- We hypothesize that lateral control is mainly done by steering since we observed only upper body motion in the pedaling frequency.
- ▶ If upper body motions are used for control then this control is in the pedaling frequency.
- ▶ When pedaling at low speed we observe lateral knee motions which are probably also used for control.

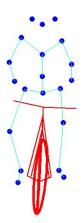



Bicycles present a rich complex and robust system to study

vehicle dynamics (rolling contacts, variable stability)



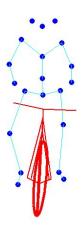
Bicycles present a rich complex and robust system to study


- vehicle dynamics (rolling contacts, variable stability)
- biomechanics (human stabilization, locomotion)





Bicycles present a rich complex and robust system to study


- vehicle dynamics (rolling contacts, variable stability)
- biomechanics (human stabilization, locomotion)
- human control (stabilization + manuveuring)





Bicycles present a rich complex and robust system to study

- vehicle dynamics (rolling contacts, variable stability)
- biomechanics (human stabilization, locomotion)
- human control (stabilization + manuveuring)
- handling qualities (perception, psychology)



